Molecules (Apr 2019)

Chemical Composition and Biological Activity of Five Essential Oils from the Ecuadorian Amazon Rain Forest

  • Paco Noriega,
  • Alessandra Guerrini,
  • Gianni Sacchetti,
  • Alessandro Grandini,
  • Edwin Ankuash,
  • Stefano Manfredini

DOI
https://doi.org/10.3390/molecules24081637
Journal volume & issue
Vol. 24, no. 8
p. 1637

Abstract

Read online

The chemical composition and biological activity of essential oils isolated from the leaves of Siparuna aspera, Siparuna macrotepala, Piper leticianum, Piper augustum and the rhizome of Hedychium coronarium were evaluated. These species are used medicinally in different ways by the Amazonian communities that live near the Kutukú mountain range. Chemical studies revealed that the main components for the two Siparuna species were germacrene D, bicyclogermacrene, α-pinene, δ-cadinene, δ-elemene, α-copaene and β-caryophyllene; for the two Piper species β-caryophyllene, germacrene D, α-(E,E)-farnesene, β-elemene, bicyclogermacrene, δ-cadinene and for H. coronarium 1,8-cineole, β-pinene, α-pinene and α-terpineol. The antioxidant activity of all essential oils was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), photochemiluminescence (PCL) quantitative assays, and DPPH and ABTS bioautographic profiles, with different results for each of them. Antimicrobial activity studies were carried out on three yeasts, six Gram positive and four Gram negative bacteria, by means of the disc diffusion method. The essential oil of H. coronarium showed the most relevant results on L. grayi, K. oxytoca and S. mutans, P. augustum and P. leticianum on S. mutans. An antibacterial bioautographic test for H. coronarium was also carried out and highlighted the potential activity of terpinen-4-ol and 1,8-cineole.

Keywords