Sensors (Jun 2023)

Deep Learning-Based Non-Contact IPPG Signal Blood Pressure Measurement Research

  • Hanquan Cheng,
  • Jiping Xiong,
  • Zehui Chen,
  • Jingwei Chen

DOI
https://doi.org/10.3390/s23125528
Journal volume & issue
Vol. 23, no. 12
p. 5528

Abstract

Read online

In this paper, a multi-stage deep learning blood pressure prediction model based on imaging photoplethysmography (IPPG) signals is proposed to achieve accurate and convenient monitoring of human blood pressure. A camera-based non-contact human IPPG signal acquisition system is designed. The system can perform experimental acquisition under ambient light, effectively reducing the cost of non-contact pulse wave signal acquisition while simplifying the operation process. The first open-source dataset IPPG-BP for IPPG signal and blood pressure data is constructed by this system, and a multi-stage blood pressure estimation model combining a convolutional neural network and bidirectional gated recurrent neural network is designed. The results of the model conform to both BHS and AAMI international standards. Compared with other blood pressure estimation methods, the multi-stage model automatically extracts features through a deep learning network and combines different morphological features of diastolic and systolic waveforms, which reduces the workload while improving accuracy.

Keywords