Nature Communications (Nov 2021)

Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks

  • Julia Koehler Leman,
  • Sergey Lyskov,
  • Steven M. Lewis,
  • Jared Adolf-Bryfogle,
  • Rebecca F. Alford,
  • Kyle Barlow,
  • Ziv Ben-Aharon,
  • Daniel Farrell,
  • Jason Fell,
  • William A. Hansen,
  • Ameya Harmalkar,
  • Jeliazko Jeliazkov,
  • Georg Kuenze,
  • Justyna D. Krys,
  • Ajasja Ljubetič,
  • Amanda L. Loshbaugh,
  • Jack Maguire,
  • Rocco Moretti,
  • Vikram Khipple Mulligan,
  • Morgan L. Nance,
  • Phuong T. Nguyen,
  • Shane Ó Conchúir,
  • Shourya S. Roy Burman,
  • Rituparna Samanta,
  • Shannon T. Smith,
  • Frank Teets,
  • Johanna K. S. Tiemann,
  • Andrew Watkins,
  • Hope Woods,
  • Brahm J. Yachnin,
  • Christopher D. Bahl,
  • Chris Bailey-Kellogg,
  • David Baker,
  • Rhiju Das,
  • Frank DiMaio,
  • Sagar D. Khare,
  • Tanja Kortemme,
  • Jason W. Labonte,
  • Kresten Lindorff-Larsen,
  • Jens Meiler,
  • William Schief,
  • Ora Schueler-Furman,
  • Justin B. Siegel,
  • Amelie Stein,
  • Vladimir Yarov-Yarovoy,
  • Brian Kuhlman,
  • Andrew Leaver-Fay,
  • Dominik Gront,
  • Jeffrey J. Gray,
  • Richard Bonneau

DOI
https://doi.org/10.1038/s41467-021-27222-7
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 15

Abstract

Read online

Computational methods are becoming an increasingly important part of biological research. Using the Rosetta framework as an example, the authors demonstrate how community-driven development of computational methods can be done in a reproducible and reliable fashion.