PLoS ONE (Jan 2013)

Periostin links mechanical strain to inflammation in abdominal aortic aneurysm.

  • Osamu Yamashita,
  • Koichi Yoshimura,
  • Ayako Nagasawa,
  • Koshiro Ueda,
  • Noriyasu Morikage,
  • Yasuhiro Ikeda,
  • Kimikazu Hamano

DOI
https://doi.org/10.1371/journal.pone.0079753
Journal volume & issue
Vol. 8, no. 11
p. e79753

Abstract

Read online

AIMS: Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammation, which contributes to the pathological remodeling of the extracellular matrix. Although mechanical stress has been suggested to promote inflammation in AAA, the molecular mechanism remains uncertain. Periostin is a matricellular protein known to respond to mechanical strain. The aim of this study was to elucidate the role of periostin in mechanotransduction in the pathogenesis of AAA. METHODS AND RESULTS: We found significant increases in periostin protein levels in the walls of human AAA specimens. Tissue localization of periostin was associated with inflammatory cell infiltration and destruction of elastic fibers. We examined whether mechanical strain could stimulate periostin expression in cultured rat vascular smooth muscle cells. Cells subjected to 20% uniaxial cyclic strains showed significant increases in periostin protein expression, focal adhesion kinase (FAK) activation, and secretions of monocyte chemoattractant protein-1 (MCP-1) and the active form of matrix metalloproteinase (MMP)-2. These changes were largely abolished by a periostin-neutralizing antibody and by the FAK inhibitor, PF573228. Interestingly, inhibition of either periostin or FAK caused suppression of the other, indicating a positive feedback loop. In human AAA tissues in ex vivo culture, MCP-1 secretion was dramatically suppressed by PF573228. Moreover, in vivo, periaortic application of recombinant periostin in mice led to FAK activation and MCP-1 upregulation in the aortic walls, which resulted in marked cellular infiltration. CONCLUSION: Our findings indicated that periostin plays an important role in mechanotransduction that maintains inflammation via FAK activation in AAA.