Development and Characterization of pH-Dependent Cellulose Acetate Phthalate Nanofibers by Electrospinning Technique
Gustavo Vidal-Romero,
Virginia Rocha-Pérez,
María L. Zambrano-Zaragoza,
Alicia Del Real,
Lizbeth Martínez-Acevedo,
Moisés J. Galindo-Pérez,
David Quintanar-Guerrero
Affiliations
Gustavo Vidal-Romero
Laboratorio de Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli C.P. 54745, Estado de Mexico, Mexico
Virginia Rocha-Pérez
Departamento en Tecnología Farmacéutica, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 09230, Mexico
María L. Zambrano-Zaragoza
Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli C.P. 54714, Estado de Mexico, Mexico
Alicia Del Real
Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Santiago de Querétaro C.P. 76230, Querétaro, Mexico
Lizbeth Martínez-Acevedo
Laboratorio de Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli C.P. 54745, Estado de Mexico, Mexico
Moisés J. Galindo-Pérez
Departamento en Tecnología Farmacéutica, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 09230, Mexico
David Quintanar-Guerrero
Laboratorio de Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli C.P. 54745, Estado de Mexico, Mexico
The aim of this work was to obtain pH-dependent nanofibers with an electrospinning technique as a novel controlled release system for the treatment of periodontal disease (PD). Cellulose acetate phthalate (CAP) was selected as a pH-sensitive and antimicrobial polymer. The NF was optimized according to polymeric dispersion variables, polymer, and drug concentration, and characterized considering morphology, diameter, entrapment efficiency (EE), process efficiency (PE), thermal properties, and release profiles. Two solvent mixtures were tested, and CHX-CAP-NF prepared with acetone/ethanol at 12% w/v of the polymer showed a diameter size of 934 nm, a uniform morphology with 42% of EE, and 55% of PE. Meanwhile, CHX-CAP-NF prepared with acetone/methanol at 11% w/v of polymer had a diameter of 257 nm, discontinuous nanofiber morphology with 32% of EE, and 40% of PE. EE and PE were dependent on the polymer concentration and the drug used in the formulation. Studies of differential scanning calorimetry (DSC) showed that the drug was dispersed in the NF matrix. The release profiles of CHX from CHX-CAP-NF followed Fickian diffusion dependent on time (t0.43−0.45), suggesting a diffusion–erosion process and a matrix behavior. The NF developed could be employed as a novel drug delivery system in PD.