Fabrication of Novel ZIF-8@BiVO<sub>4</sub> Composite with Enhanced Photocatalytic Performance
Yun-hui Si,
Ya-yun Li,
Yu Xia,
Shao-ke Shang,
Xin-bo Xiong,
Xie-rong Zeng,
Ji Zhou
Affiliations
Yun-hui Si
Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
Ya-yun Li
Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
Yu Xia
Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
Shao-ke Shang
Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
Xin-bo Xiong
Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
Xie-rong Zeng
Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
Ji Zhou
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
In this work, a novel metal-organic framework (MOF) and BiVO4 (BVO) composite photocatalyst was successfully synthesized by an in-situ growth method. The characterization of obtained samples was done by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, N2 adsorption, and photoluminescence spectroscopy. The photocatalytic performance of ZIF-8@BiVO4 composite was evaluated by the degradation of methylene blue (MB) under simulated visible light irradiation. Compared with the mixture of BVO and ZIF-8, the composite photocatalyst exhibited superior photodegradation efficiency, which could be attributed to the synergistic effect between BVO and ZIF-8. The reduced recombination of photogenerated electrons and holes was considered to be an important reason for the enhancement of photocatalytic performance. This design demonstrates a rational method to improve the photocatalytic performance by combining photocatalysts with MOFs.