Journal of Neuroinflammation (Oct 2022)

T-cells in human trigeminal ganglia express canonical tissue-resident memory T-cell markers

  • Peter-Paul A. Unger,
  • Anna E. Oja,
  • Tamana Khemai-Mehraban,
  • Werner J. D. Ouwendijk,
  • Pleun Hombrink,
  • Georges M. G. M. Verjans

DOI
https://doi.org/10.1186/s12974-022-02611-x
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background Trigeminal ganglia (TG) neurons are the main site of lifelong latent herpes simplex virus type 1 (HSV-1) infection. T-cells in ganglia contribute to long-term control of latent HSV-1 infection, but it is unclear whether these cells are bona fide tissue-resident memory T-cells (TRM). We optimized the processing of human post-mortem nervous tissue to accurately phenotype T-cells in human TG ex vivo and in situ. Methods Peripheral blood mononuclear cells (PBMC; 5 blood donors) were incubated with several commercial tissue digestion enzyme preparations to determine off-target effect on simultaneous detection of 15 specific T-cell subset markers by flow cytometry. Next, optimized enzymatic digestion was applied to ex vivo phenotype T-cells in paired PBMC, normal appearing white matter (NAWM) and TG of 8 deceased brain donors obtained < 9 h post-mortem by flow cytometry. Finally, the phenotypic and functional markers, and spatial orientation of T-cells in relation to neuronal somata, were determined in TG tissue sections of five HSV-1-latently infected individuals by multiparametric in situ analysis. Results Collagenase IV digestion of human nervous tissue was most optimal to obtain high numbers of viable T-cells without disrupting marker surface expression. Compared to blood, majority T-cells in paired NAWM and TG were effector memory T-cells expressing the canonical TRM markers CD69, CXCR6 and the immune checkpoint marker PD1, and about half co-expressed CD103. A trend of relatively higher TRM frequencies were detected in TG of latently HSV-1-infected compared to HSV-1 naïve individuals. Subsequent in situ analysis of latently HSV-1-infected TG showed the presence of cytotoxic T-cells (TIA-1+), which occasionally showed features of proliferation (KI-67+) and activation (CD137+), but without signs of degranulation (CD107a+) nor damage (TUNEL+) of TG cells. Whereas majority T-cells expressed PD-1, traits of T-cell senescence (p16INK4a+) were not detected. Conclusions The human TG represents an immunocompetent environment in which both CD4 and CD8 TRM are established and retained. Based on our study insights, we advocate for TRM-targeted vaccine strategies to bolster local HSV-1-specific T-cell immunity, not only at the site of recurrent infection but also at the site of HSV-1 latency.

Keywords