Comparative efficacy of sweated and non-sweated Salvia miltiorrhiza Bge. extracts on acute myocardial ischemia via regulating the PPARα/RXRα/NF-κB signaling pathway
Xiaoxiao Shan,
Junying Li,
Bangzhen Hong,
Huihui Yin,
Ziyi Lu,
Guokai Wang,
Nianjun Yu,
Daiyin Peng,
Lei Wang,
Caiyun Zhang,
Weidong Chen
Affiliations
Xiaoxiao Shan
School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
Junying Li
School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
Bangzhen Hong
School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
Huihui Yin
School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
Ziyi Lu
School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
Guokai Wang
School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
Nianjun Yu
School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
Daiyin Peng
School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
Lei Wang
School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China; Corresponding author. School of Pharmacy, Anhui University of Chinese Medicine, China.
Caiyun Zhang
School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Corresponding author. School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China.
Weidong Chen
School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China; Corresponding author. School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China.
Salvia miltiorrhiza Bge. (S. miltiorrhiza) is a well-known traditional Chinese medicine for the treatment of cardiovascular diseases. The processing of S. miltiorrhiza requires the raw herbs to sweat first and then dry. The aim of this study was to investigate the anti-acute myocardial ischemia (AMI) of S. miltiorrhiza extracts (including tanshinones and phenolic acids) before and after sweating, and to further explore whether the “sweating” primary processing affected the efficacy of S. miltiorrhiza. The AMI animal model was established by subcutaneous injection of isoprenaline hydrochloride (ISO). After treatment, the cardiac function of rats was evaluated by electrocardiogram (ECG), biochemical, and histochemical analysis. Moreover, the regulation of S. miltiorrhiza extracts on the peroxisome proliferator-activated receptor α (PPARα)/retinoid X receptor α (RXRα)/nuclear transcription factor-kappa B (NF-κB) signaling pathway of rats was assessed by the Western blotting. The results showed that sweated and non-sweated S. miltiorrhiza extracts including tanshinones and phenolic acids significantly reduced ST-segment elevation in ECG and the myocardial infarction area in varying degrees. Meanwhile, sweated and non-sweated S. miltiorrhiza reversed the activities of aspartate transaminase (AST), lactic dehydrogenase (LDH), creatine kinase-MB (CK-MB), and superoxide dismutase (SOD), as well as the levels of interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) in AMI rats. Concurrently, the results of Western blotting revealed that S. miltiorrhiza extracts regulated the PPARα/RXRα/NF-κB signaling pathway to exert an anti-inflammatory effect. Most importantly, sweated S. miltiorrhiza tanshinones extracts are more effective than the non-sweated S. miltiorrhiza, and the anti-inflammatory efficacy of tanshinones extract was also better than that of phenolic acid extract. Although phenolic acid extracts before and after sweating were effective in anti-AMI, there was no significant difference between them. In conclusion, both tanshinones and phenolic acids extracts of sweated and non-sweated S. miltiorrhiza promote anti-oxidative stress and anti-inflammatory against AMI via regulating the PPARα/RXRα/NF-κB signaling pathway. Further, the comparations between sweated and non-sweated S. miltiorrhiza extracts indicate that sweated S. miltiorrhiza tanshinones extracts have better therapeutic effects on AMI.