Energies (Jul 2023)

Comprehensive Assessment of Biomass Properties for Energy Usage Using Near-Infrared Spectroscopy and Spectral Multi-Preprocessing Techniques

  • Bijendra Shrestha,
  • Jetsada Posom,
  • Panmanas Sirisomboon,
  • Bim Prasad Shrestha

DOI
https://doi.org/10.3390/en16145351
Journal volume & issue
Vol. 16, no. 14
p. 5351

Abstract

Read online

In this study, partial least squares regression (PLSR) models were developed using no preprocessing, traditional preprocessing, multi-preprocessing 5-range, multi-preprocessing 3-range, a genetic algorithm (GA), and a successive projection algorithm (SPA) to assess the higher heating value (HHV) and ultimate analysis of grounded biomass for energy usage by employing near-infrared (NIR) spectroscopy. A novel approach was utilized based on the assumption that using multiple pretreatment methods across different sections in the entire NIR wavenumber range would enhance the performance of the model. The performance of the model obtained from 200 biomass samples for HHV and 120 samples for ultimate analysis were compared, and the best model was selected based on the coefficient of determination of the validation set, root mean square error of prediction, and the ratio of prediction to deviation values. Based on the model performance results, the proposed HHV model from GA-PLSR and the N models from the multi-preprocessing PLSR 5-range could be used for most applications, including research, whereas the C and H models from GA-PLSR and the O model from the multi-preprocessing PLSR 5 range method 5-range air performance and are applicable only for rough screening. The overall findings highlight that the multi-preprocessing 5-range method, which was attempted as a novel approach in this study to develop the PLSR model, demonstrated better accuracy for HHV, C, N, and O, improving these models by 4.1839%, 8.1842%, 3.7587%, and 4.0085%, respectively. Therefore, this method can be considered a reliable and non-destructive alternative method for rapidly assessing biomass properties for energy usage and can also be used effectively in biomass trading. However, due to the smaller number of samples used in the model development, more samples are needed to update the model for robust application.

Keywords