Geophysical Research Letters (May 2024)
Frictional Stability of Laumontite Under Hydrothermal Conditions and Implications for Injection‐Induced Seismicity in the Gonghe Geothermal Reservoir, Northwest China
Abstract
Abstract Laumontite is a common and potentially frictionally unstable hydrothermal alteration product present in deep faults of the Gonghe EGS reservoir. We characterize the friction‐stability characteristics of synthetic laumontite gouge under in situ reservoir conditions. The pure laumontite gouge is frictionally strong (μ = 0.73–0.98) and the quartz/laumontite mixture (1:1) is generally less strong (μ = 0.73–0.78) under experimental conditions (Pc = 95 MPa, T = 90–250°C, Pf = 0–90 MPa). The shear velocity was stepped between 6.1, 0.61, then 0.061 μm/s for our experiments. For both gouges, the friction coefficient is independent of temperature and increases with elevated pore pressures. The pure gouge and mixture are strongly velocity‐weakening over a broad range in temperatures (∼90–220°C) and excess pore pressures (0–90 MPa) relevant to the Gonghe stimulation. Microearthquakes (MEQs) observed during stimulation are confined to within the broad depth range of inferred frictional instability—although fluid overpressures are also limited to this region. The observation that laumontite mixtures are frictionally unstable over a broad range of pressures and especially temperatures representative of EGS reservoirs and insensitive to the presence of the coexisting mineral phase (quartz) suggests its presence is a strong indicator of potential seismic hazard.
Keywords