New Journal of Physics (Jan 2017)

Optomechanical measurement of a millimeter-sized mechanical oscillator approaching the quantum ground state

  • J T Santos,
  • J Li,
  • J Ilves,
  • C F Ockeloen-Korppi,
  • M Sillanpää

DOI
https://doi.org/10.1088/1367-2630/aa83a5
Journal volume & issue
Vol. 19, no. 10
p. 103014

Abstract

Read online

Cavity optomechanics is a tool to study the interaction between light and micromechanical motion. Here we observe optomechanical physics in a truly macroscopic oscillator close to the quantum ground state. As the mechanical system, we use a mm-sized piezoelectric quartz disk oscillator. Its motion is coupled to a charge qubit which translates the piezo-induced charge into an effective radiation–pressure interaction between the disk and a microwave cavity. We measure the thermal motion of the lowest mechanical shear mode at 7 MHz down to 30 mK, corresponding to roughly 10 ^2 quanta in a 20 mg oscillator. We estimate that with realistic parameters, it is possible to utilize the back-action cooling by the qubit in order to control macroscopic motion by a single Cooper pair. The work opens up opportunities for macroscopic quantum experiments.

Keywords