3D-Printed Polyamide 12/Styrene–Acrylic Copolymer–Boron Nitride (PA12/SA–BN) Composite with Macro and Micro Double Anisotropic Thermally Conductive Structures
Minhang Chen,
Xiaojie Chen,
Junle Zhang,
Bingfeng Xue,
Shangyu Zhai,
Haibo She,
Yuancheng Zhang,
Zhe Cui,
Peng Fu,
Xinchang Pang,
Minying Liu,
Xiaomeng Zhang
Affiliations
Minhang Chen
School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Engineering Laboratory of High-Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou University, Zhengzhou 450000, China
Xiaojie Chen
School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Engineering Laboratory of High-Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou University, Zhengzhou 450000, China
Junle Zhang
Faculty of Engineering, Huanghe Science and Technology University, Zhengzhou 459000, China
Bingfeng Xue
Faculty of Engineering, Huanghe Science and Technology University, Zhengzhou 459000, China
Shangyu Zhai
School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Engineering Laboratory of High-Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou University, Zhengzhou 450000, China
Haibo She
Jinguan Electric Co., Ltd., Nanyang 473000, China
Yuancheng Zhang
School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Engineering Laboratory of High-Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou University, Zhengzhou 450000, China
Zhe Cui
School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Engineering Laboratory of High-Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou University, Zhengzhou 450000, China
Peng Fu
School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Engineering Laboratory of High-Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou University, Zhengzhou 450000, China
Xinchang Pang
School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Engineering Laboratory of High-Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou University, Zhengzhou 450000, China
Minying Liu
School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Engineering Laboratory of High-Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou University, Zhengzhou 450000, China
Xiaomeng Zhang
School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Engineering Laboratory of High-Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou University, Zhengzhou 450000, China
Anisotropic thermally conductive composites are very critical for precise thermal management of electronic devices. In this work, in order to prepare a composite with significant anisotropic thermal conductivity, polyamide 12/styrene–acrylic copolymer–boron nitride (PA12/SA–BN) composites with macro and micro double anisotropic structures were fabricated successfully using 3D printing and micro-shear methods. The morphologies and thermally conductive properties of composites were systematically characterized via SEM, XRD, and the laser flash method. Experimental results indicate that the through-plane thermal conductivity of the composite is 4.2 W/(m·K) with only 21.4 wt% BN, which is five times higher than that of the composite with randomly oriented BN. Simulation results show that the macro-anisotropic structure of the composite (caused by the selective distribution of BN) as well as the micro-anisotropic structure (caused by the orientation structure of BN) both play critical roles in spreading heat along the specified direction. Therefore, as-obtained composites with double anisotropic structures possess great potential for the application inefficient and controllable thermal management in various fields.