Energies (Sep 2024)

Determination of Demand for LNG in Poland

  • Ewelina Orysiak,
  • Mykhaylo Shuper

DOI
https://doi.org/10.3390/en17174414
Journal volume & issue
Vol. 17, no. 17
p. 4414

Abstract

Read online

This study was aimed at improving the energy efficiency of the distribution of liquefied natural gas (LNG) as shipping fuel in the southern Baltic Sea. The objective of this study was to determine the demand for LNG for maritime shipping by analyzing the distribution of the resource from the water side (ship-to-ship). LNG was chosen due to the location of the LNG terminal in Świnoujście within the analyzed water area, where a problem has arisen in the southern part of the Baltic Sea regarding fuel supply for vessels due to the lack of developed infrastructure along the coast. An analysis was conducted to optimize the size of the LNG fleet and infrastructure facilities. Seeking compliance with Annex VI to the MARPOL 73/78 Convention, adopted by the International Maritime Organization (IMO), shipowners see potential in the switch from conventional fuels to LNG. As one of the alternative solutions, it will contribute to reducing harmful emissions. Determination of the LNG distribution volume requires the identification of LNG storage facility locations, specifying the number of LNG-powered ships (broken down by type) and the number of LNG bunkering ships. The first part of this study contains a detailed analysis of the number of sea-going ships that provide services in the southern part of the Baltic Sea and the world’s number of LNG bunkering ships. The database contains a set of the characteristics required to determine the optimal demand for LNG, where LNG bunkering vessels are capable of supplying fuel within the shortest possible time and covering the shortest possible distance to LNG-powered ships. The characteristics include the type of ship, requested LNG volume, the speed of LNG bunkering ships, the distance between LNG facilities, and the loading rate (the volume of fuel received per time unit). Based on the collected data, the volume of LNG distribution was determined using MATLAB R2019a software. The remainder of this study contains a description of the conducted research and results of an analysis of the traffic density in the Baltic Sea. The results were obtained on the basis of data from the Statistical Yearbook of Maritime Economy and IALA IWRAP Mk2 2020 software. The number of LNG-powered ships and number of LNG bunkering ships were specified, and the demand for LNG for the area under analysis was determined.

Keywords