Journal of Pain Research (Jun 2012)

Changes in functional properties of A-type but not C-type sensory neurons in vivo in a rat model of peripheral neuropathy

  • Zhu YF,
  • Wu Q,
  • Henry JL

Journal volume & issue
Vol. 2012, no. default
pp. 175 – 192

Abstract

Read online

Yong Fang Zhu, Qi Wu, James L HenryMichael G DeGroote Institute for Pain Research and Care, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, CanadaBackground: The aim of this study was to compare primary sensory neurons in controls and in an animal neuropathic pain model in order to understand which types of neurons undergo changes associated with peripheral neuropathy. On the basis of intracellular recordings in vivo from somata, L4 sensory dorsal root ganglion neurons were categorized according to action potential configuration, conduction velocity, and receptive field properties to mechanical stimuli.Methods: Intracellular recordings were made from functionally identified dorsal root ganglion neurons in vivo in the Mosconi and Kruger animal model of peripheral neuropathic pain.Results: In this peripheral neuropathy model, a specific population of Aβ-fiber low threshold mechanoreceptor neurons, which respond normally to innocuous mechanical stimuli, exhibited differences in action potential configuration and conduction velocity when compared with control animals. No abnormal conduction velocity, action potential shapes, or tactile sensitivity of C-fiber neurons were encountered.Conclusion: This study provides evidence for defining a potential role of Aβ-fiber low threshold mechanoreceptor neurons that might contribute to peripheral neuropathic pain.Keywords: peripheral neuropathy, neuropathic pain, primary sensory neuron, dorsal root ganglion, action potential configuration, animal model, in vivo recording