Journal of Pure and Applied Chemistry Research (Mar 2021)

Inhibitory Effect of Some Methylxanthines on Copper Corrosion in 1M HNO3: Experimental, DFT and QSPR Studies

  • Victorien Kouakou,
  • Mougo André Tigori,
  • Amadou Kouyaté,
  • Paulin Marius Niamien

Journal volume & issue
Vol. 10, no. 1
pp. 1 – 17

Abstract

Read online

Inhibition corrosion of metals by using organic compounds has become an unavoidable means. So, in this work, the effect of methylxanthines on copper corrosion inhibition in 1M HNO3 was investigated by mass loss measurements and by two theoretical approaches: Density Functional Theory (DFT) and Quantitative Structure-Property Relationship (QSPR.) Quantum chemical calculations based on DFT at the B3LYP/6-31G(d) level permit to establish a correlation between the quantum chemical parameters and the experimental inhibition efficiency (IE %). It was found that inhibition efficiencies increase with increasing temperature and immersion time. In addition, the QSPR approach was used to find the best set of parameters for each molecule. This set of parameters make it possible to characterize the inhibition performance of the tested molecules solution significantly. The theoretical calculations are consistent with the experimental results.

Keywords