BMC Genomics (Aug 2024)
Association mapping with a diverse population of Puccinia graminis f. sp. tritici identified avirulence loci interacting with the barley Rpg1 stem rust resistance gene
Abstract
Abstract Background Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of barley and wheat. A diverse sexual Pgt population from the Pacific Northwest (PNW) region of the US contains a high proportion of individuals with virulence on the barley stem rust resistance (R) gene, Rpg1. However, the evolutionary mechanisms of this virulence on Rpg1 are mysterious considering that Rpg1 had not been deployed in the region and the gene had remained remarkably durable in the Midwestern US and prairie provinces of Canada. Methods and results To identify AvrRpg1 effectors, genome wide association studies (GWAS) were performed using 113 Pgt isolates collected from the PNW (n = 89 isolates) and Midwest (n = 24 isolates) regions of the US. Disease phenotype data were generated on two barley lines Morex and the Golden Promise transgenic (H228.2c) that carry the Rpg1 gene. Genotype data was generated by whole genome sequencing (WGS) of 96 isolates (PNW = 89 isolates and Midwest = 7 isolates) and RNA sequencing (RNAseq) data from 17 Midwestern isolates. Utilizing ~1.2 million SNPs generated from WGS and phenotype data (n = 96 isolates) on the transgenic line H228.2c, 53 marker trait associations (MTAs) were identified. Utilizing ~140 K common SNPs generated from combined analysis of WGS and RNAseq data, two significant MTAs were identified using the cv Morex phenotyping data. The 55 MTAs defined two distinct avirulence loci, on supercontig 2.30 and supercontig 2.11 of the Pgt reference genome of Pgt isolate CRL 75-36-700-3. The major avirulence locus designated AvrRpg1A was identified with the GWAS using both barley lines and was delimited to a 35 kb interval on supercontig 2.30 containing four candidate genes (PGTG_10878, PGTG_10884, PGTG_10885, and PGTG_10886). The minor avirulence locus designated AvrRpg1B identified with cv Morex contained a single candidate gene (PGTG_05433). AvrRpg1A haplotype analysis provided strong evidence that a dominant avirulence gene underlies the locus. Conclusions The association analysis identified strong candidate AvrRpg1 genes. Further analysis to validate the AvrRpg1 genes will fill knowledge gaps in our understanding of rust effector biology and the evolution and mechanism/s of Pgt virulence on Rpg1.
Keywords