Frontiers in Synaptic Neuroscience (Apr 2019)
Inhibition of the Interaction Between Group I Metabotropic Glutamate Receptors and PDZ-Domain Proteins Prevents Hippocampal Long-Term Depression, but Not Long-Term Potentiation
Abstract
The group I metabotropic glutamate (mGlu) receptor subtypes, mGlu1 and mGlu5, strongly regulate hippocampal synaptic plasticity. Both harbor PSD-95/discs-large/ZO-1 (PDZ) motifs at their extreme carboxyl terminals, which allow interaction with the PDZ domain of Tamalin, regulate the cell surface expression of group I mGlu receptors, and may modulate their coupling to signaling proteins. We investigated the functional role of this interaction in hippocampal long-term depression (LTD). Acute intracerebral treatment of adult rats with a cell-permeable PDZ-blocking peptide (pep-mGluR-STL), designed to competitively inhibit the interaction between Tamalin and group 1 mGlu receptors, prevented expression of LTD in the hippocampal CA1 region without affecting long-term potentiation (LTP) or basal synaptic transmission. Pep-mGluR-STL prevented facilitation by the group I mGlu receptor agonist, (S)-3,5-Dihydroxyphenylglycine (DHPG), and the mGlu5 agonist, (R,S)-2-chloro-5-Hydroxyphenylglycine (CHPG), of short-term depression (STD) into LTD, suggesting that Tamalin preferentially acts by mediating signaling through mGlu5. These data support that Tamalin is essential for the persistent expression of LTD and that it subserves the effective signaling of group 1 mGlu receptors.
Keywords