Stem Cell Reports (Sep 2015)

PGC Reversion to Pluripotency Involves Erasure of DNA Methylation from Imprinting Control Centers followed by Locus-Specific Re-methylation

  • Marisabel Oliveros-Etter,
  • Ziwei Li,
  • Kevin Nee,
  • Linzi Hosohama,
  • Joseph Hargan-Calvopina,
  • Serena A. Lee,
  • Prakash Joti,
  • Juehua Yu,
  • Amander T. Clark

DOI
https://doi.org/10.1016/j.stemcr.2015.07.006
Journal volume & issue
Vol. 5, no. 3
pp. 337 – 349

Abstract

Read online

Primordial germ cells (PGCs) are fate restricted to differentiate into gametes in vivo. However, when removed from their embryonic niche, PGCs undergo reversion to pluripotent embryonic germ cells (EGCs) in vitro. One of the major differences between EGCs and embryonic stem cells (ESCs) is variable methylation at imprinting control centers (ICCs), a phenomenon that is poorly understood. Here we show that reverting PGCs to EGCs involved stable ICC methylation erasure at Snrpn, Igf2r, and Kcnqot1. In contrast, the H19/Igf2 ICC undergoes erasure followed by de novo re-methylation. PGCs differentiated in vitro from ESCs completed Snrpn ICC erasure. However, the hypomethylated state is highly unstable. We also discovered that when the H19/Igf2 ICC was abnormally hypermethylated in ESCs, this is not erased in PGCs differentiated from ESCs. Therefore, launching PGC differentiation from ESC lines with appropriately methylated ICCs is critical to the generation of germline cells that recapitulate endogenous ICC erasure.