Effect of a Novel Hydroxybenzoic Acid Based Mitochondria Directed Antioxidant Molecule on Bovine Sperm Function and Embryo Production
João Campos Santos,
Carla Cruz Marques,
Maria Conceição Baptista,
Jorge Pimenta,
José Teixeira,
Liliana Montezinho,
Fernando Cagide,
Fernanda Borges,
Paulo J. Oliveira,
Rosa M. L. N. Pereira
Affiliations
João Campos Santos
Biotechnology and Genetic Resources Unit, INIAV—National Institute of Agrarian and Veterinarian Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal
Carla Cruz Marques
Biotechnology and Genetic Resources Unit, INIAV—National Institute of Agrarian and Veterinarian Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal
Maria Conceição Baptista
Biotechnology and Genetic Resources Unit, INIAV—National Institute of Agrarian and Veterinarian Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal
Jorge Pimenta
Biotechnology and Genetic Resources Unit, INIAV—National Institute of Agrarian and Veterinarian Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal
José Teixeira
CNC-Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
Liliana Montezinho
CIVG, Center for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal
Fernando Cagide
CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Campo Alegre, 4169-007 Porto, Portugal
Fernanda Borges
CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Campo Alegre, 4169-007 Porto, Portugal
Paulo J. Oliveira
CNC-Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
Rosa M. L. N. Pereira
Biotechnology and Genetic Resources Unit, INIAV—National Institute of Agrarian and Veterinarian Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal
Sperm cells are particularly vulnerable to reactive oxygen species (ROS), impairing their fertilizing ability. Our objective was to study the effect of a novel mitochondrial-directed antioxidant, AntiOxBEN2, on bovine sperm function. This antioxidant was added to the semen capacitation medium (CAP), during the swim-up process, and to the fertilization medium (FERT) during the co-incubation of matured oocytes and capacitated spermatozoa, in concentrations of 0 (control), 1, and 10 µM. After the swim-up, sperm motility (CASA and visual analysis), vitality (eosin-nigrosin), mitochondrial membrane potential (JC1), intracellular ROS, adenosine triphosphate (ATP) levels, and basal metabolism (Seahorse Xfe96) were evaluated. Embryo development and quality were also assessed. Higher cleavage rates were obtained when 1 µM AntiOxBEN2 were added to CAP and FERT media (compared to control, p p = 0.01), on the increment of mitochondrial membrane potential (p ≤ 0.003) and, consequently, on the sperm quality was identified. However, the highest dose impaired progressive motility, ATP production, and the number of produced embryos. The results demonstrate a beneficial effect of AntiOxBEN2 (1 µM) on sperm capacitation and fertilization processes, thus improving embryonic development. This may constitute a putative novel therapeutic strategy to improve the outcomes of assisted reproductive techniques (ART).