Fabrication and Characterization of Single-Crystal Diamond Membranes for Quantum Photonics with Tunable Microcavities
Julia Heupel,
Maximilian Pallmann,
Jonathan Körber,
Rolf Merz,
Michael Kopnarski,
Rainer Stöhr,
Johann Peter Reithmaier,
David Hunger,
Cyril Popov
Affiliations
Julia Heupel
Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
Maximilian Pallmann
Physikalisches Institut, Karlsruher Institute für Technologie (KIT), Wolfgang-Gaede-Str.1, 76131 Karlsruhe, Germany
Jonathan Körber
Physikalisches Institut, Karlsruher Institute für Technologie (KIT), Wolfgang-Gaede-Str.1, 76131 Karlsruhe, Germany
Rolf Merz
Institut für Oberflächen- und Schichtanalytik (IFOS), University of Kaiserslautern, Trippstadter Str. 120, 67663 Kaiserslautern, Germany
Michael Kopnarski
Institut für Oberflächen- und Schichtanalytik (IFOS), University of Kaiserslautern, Trippstadter Str. 120, 67663 Kaiserslautern, Germany
Rainer Stöhr
Physikalisches Institut, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
Johann Peter Reithmaier
Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
David Hunger
Physikalisches Institut, Karlsruher Institute für Technologie (KIT), Wolfgang-Gaede-Str.1, 76131 Karlsruhe, Germany
Cyril Popov
Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
The development of quantum technologies is one of the big challenges in modern research. A crucial component for many applications is an efficient, coherent spin–photon interface, and coupling single-color centers in thin diamond membranes to a microcavity is a promising approach. To structure such micrometer thin single-crystal diamond (SCD) membranes with a good quality, it is important to minimize defects originating from polishing or etching procedures. Here, we report on the fabrication of SCD membranes, with various diameters, exhibiting a low surface roughness down to 0.4 nm on a small area scale, by etching through a diamond bulk mask with angled holes. A significant reduction in pits induced by micromasking and polishing damages was accomplished by the application of alternating Ar/Cl2 + O2 dry etching steps. By a variation of etching parameters regarding the Ar/Cl2 step, an enhanced planarization of the surface was obtained, in particular, for surfaces with a higher initial surface roughness of several nanometers. Furthermore, we present the successful bonding of an SCD membrane via van der Waals forces on a cavity mirror and perform finesse measurements which yielded values between 500 and 5000, depending on the position and hence on the membrane thickness. Our results are promising for, e.g., an efficient spin–photon interface.