Engineering (Oct 2024)

Direct Ethylene Purification from Cracking Gas via a Metal–Organic Framework Through Pore Geometry Fitting

  • Yang Chen,
  • Zhenduo Wu,
  • Longlong Fan,
  • Rajamani Krishna,
  • Hongliang Huang,
  • Yi Wang,
  • Qizhao Xiong,
  • Jinping Li,
  • Libo Li

Journal volume & issue
Vol. 41
pp. 84 – 92

Abstract

Read online

The direct one-step separation of polymer-grade C2H4 from complex light hydrocarbon mixtures has high industrial significance but is very challenging. Herein, an ethylene-adsorption-weakening strategy is applied for precise regulation of the pore geometry of four tailor-made metal–organic frameworks (MOFs) with pillar-layered structures, dubbed TYUT-10/11/12/13. Based on its pore geometry design and functional group regulation, TYUT-12 exhibits exceptional selective adsorption selectivity toward C3H8, C3H6, C2H6, C2H2, and CO2 over C2H4; its C2H6/C2H4 adsorption selectivity reaches 4.56, surpassing the record value of 4.4 by Fe2(O2)(dobdc) (dobdc4− = 2,5-dioxido-1,4-benzenedicarboxylate). The weak π–π stacking binding affinity toward C2H4 in TYUT-12 is clearly demonstrated through a combination of neutron powder diffraction measurements and theoretical calculations. Breakthrough experiments demonstrate that C2H4 can be directly obtained from binary, ternary, quaternary, and six-component light hydrocarbon mixtures with over 99.95% purity.

Keywords