Journal of Animal Science and Technology (Jan 2017)

Intrauterine diabetic milieu instigates dysregulated adipocytokines production in F1 offspring

  • Shady H. Tawfik,
  • Maha M. Haiba,
  • Mohamed I. Saad,
  • Taha M. Abdelkhalek,
  • Mervat Y. Hanafi,
  • Maher A. Kamel

DOI
https://doi.org/10.1186/s40781-016-0125-1
Journal volume & issue
Vol. 59, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Intrauterine environment plays a pivotal role in the origin of fatal diseases such as the metabolic syndrome. Diabetes is associated with low-grade inflammatory state and dysregulated adipokines production. The aim of this study is to investigate the effect of maternal diabetes on adipocytokines (adiponectin, leptin and TNF-α) production in F1 offspring in rats. Methods The offspring groups were as follows: F1 offspring of control mothers under control diet (CD) (CF1-CD), F1 offspring of control mothers under high caloric diet (HCD) (CF1-HCD), F1 offspring of diabetic mothers under CD (DF1-CD), and F1 offspring of diabetic mothers under HCD (DF1-HCD). Every 5 weeks post-natal, 10 pups of each subgroup were culled to obtain blood samples for biochemical analysis. Results The results indicate that DF1-CD and DF1-HCD groups exhibited hyperinsulinemia, dyslipidemia, insulin resistance and impaired glucose homeostasis compared to CF1-CD (p > 0.05). DF1-CD and DF1-HCD groups had high hepatic and muscular depositions of TGs. The significant elevated NEFA level only appeared in offspring of diabetic mothers that was fed HCD. DF1-CD and DF1-HCD groups demonstrated low serum levels of adiponectin, high levels of leptin, and elevated levels of TNF-α compared to CF1-CD (p > 0.05). These results reveal the disturbed metabolic lipid profile of offspring of diabetic mothers and could guide further characterization of the mechanisms involved. Conclusion Dysregulated adipocytokines production could be a possible mechanism for the transgenerational transmittance of diabetes, especially following a postnatal diabetogenic environment. Moreover, the exacerbating effects of postnatal HCD on NEFA in rats might be prone to adipcytokine dysregulation. Furthermore, dysregulation of serum adipokines is a prevalent consequence of maternal diabetes and could guide further investigations to predict the development of metabolic disturbances.

Keywords