BMC Public Health (Apr 2022)
Evaluating the effectiveness of Hong Kong’s border restriction policy in reducing COVID-19 infections
Abstract
Abstract This study evaluates the effectiveness of Hong Kong’s strict border restrictions with mainland China in curbing the transmission of COVID-19. Combining big data from Baidu Population Migration with traditional meteorological data and census data for over 200 Chinese cities, we utilize an advanced quantitative approach, namely synthetic control modeling, to produce a counterfactual “synthetic Hong Kong” without a strict border restriction policy. We then simulate infection trends under the hypothetical scenarios and compare them to actual infection numbers. Our counterfactual synthetic control model demonstrates a lower number of COVID-19 infections than the actual scenario, where strict border restrictions with mainland China were implemented from February 8 to March 6, 2020. Moreover, the second synthetic control model, which assumes a border reopen on 7 May 2020 demonstrates nonpositive effects of extending the border restriction policy on preventing and controlling infections. We conclude that the border restriction policy and its further extension may not be useful in containing the spread of COVID-19 when the virus is already circulating in the local community. Given the substantial economic and social costs, and as precautionary measures against COVID-19 becomes the new normal, countries can consider reopening borders with neighbors who have COVID-19 under control. Governments also need to closely monitor the changing epidemic situations in other countries in order to make prompt and sensible amendments to their border restriction policies.
Keywords