Maf1 controls retinal neuron number by both RNA Pol III- and Pol II-dependent mechanisms
Yifei Li,
Dongchang Xiao,
Haiqiao Chen,
X.F. Steven Zheng,
Mengqing Xiang
Affiliations
Yifei Li
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
Dongchang Xiao
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
Haiqiao Chen
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
X.F. Steven Zheng
Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
Mengqing Xiang
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Corresponding author
Summary: The generation of appropriate numbers and types of neurons is a prerequisite for assembling functional neural circuits. However, the molecular basis regulating retinal neuron number remains poorly understood. Here, we report that inactivation of the RNA polymerase (Pol) III inhibitor gene Maf1 in mice results in decreased retinal thickness and neuron number that cause attenuated electroretinogram (ERG) responses. Its absence causes aberrant differentiation of all retinal neuron types primarily by an RNA Pol II-dependent mechanism while promoting retinal progenitor cell proliferation via both Pol III- and Pol II-dependent mechanisms. Chromatin profiling and transcription assay reveal that Maf1 binds widely to the genome to regulate the expression of a large set of Pol II-transcribed genes involved in retinal cell proliferation, differentiation, and/or survival. Together, our data suggest that Maf1 may control retinal neuron number by a balanced regulation of cell proliferation, differentiation, and death via both Pol III-dependent and Pol II-dependent mechanisms.