Most nanothermite compositions utilise Al as a fuel, due to its low cost, high reactivity and availability. Nevertheless, aluminothermites exhibit high ignition temperature and low active metal content. In this paper, the combustion behaviour of Ti/CuO and Ti/CuO/NC systems is discussed. The compositions were prepared with a wet-mixing/sonication process followed by an electrospray technique and were examined in terms of their mechanical and radiation sensitivity, energetic parameters and morphology. The results exhibited a strong correlation between equivalence ratio and energetic parameters. The performed tests showed the crucial impact the addiction of the chosen energetic binder on the morphology and performance of the compositions. The results of our experiments indicate the occurrence of a different combustion mechanism than the one observed for Al-based nanothermites. In our case, the combustion mechanism involves a limitation by the diffusion of the oxidising agent and its decomposition products into the reactive fuel core.