Probing thermally-induced structural evolution during the synthesis of layered Li-, Na-, or K-containing 3d transition-metal oxides
Weibo Hua,
Xiaoxia Yang,
Nicola P.M. Casati,
Laijun Liu,
Suning Wang,
Volodymyr Baran,
Michael Knapp,
Helmut Ehrenberg,
Sylvio Indris
Affiliations
Weibo Hua
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China; Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany; Corresponding authors.
Xiaoxia Yang
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
Nicola P.M. Casati
Paul Scherrer Institut (PSI), WLGA/229, 5232, Villigen PSI, Switzerland
Laijun Liu
College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China
Suning Wang
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China; Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany; College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Corresponding authors.
Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
Helmut Ehrenberg
Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
Sylvio Indris
Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany; Corresponding authors.
Layered alkali-containing 3d transition-metal oxides are of the utmost importance in the use of electrode materials for advanced energy storage applications such as Li-, Na-, or K-ion batteries. A significant challenge in the field of materials chemistry is understanding the dynamics of the chemical reactions between alkali-free precursors and alkali species during the synthesis of these compounds. In this study, in situ high-resolution synchrotron-based X-ray diffraction was applied to reveal the Li/Na/K-ion insertion-induced structural transformation mechanism during high-temperature solid-state reaction. The in situ diffraction results demonstrate that the chemical reaction pathway strongly depends on the alkali-free precursor type, which is a structural matrix enabling phase transitions. Quantitative phase analysis identifies for the first time the decomposition of lithium sources as the most critical factor for the formation of metastable intermediates or impurities during the entire process of Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 formation. Since the alkali ions have different ionic radii, Na/K ions tend to be located on prismatic sites in the defective layered structure (Na2/3-x[Ni0.25Mn0.75]O2 or K2/3-x[Ni0.25Mn0.75]O2) during calcination, whereas the Li ions prefer to be localized on the tetrahedral and/or octahedral sites, forming O-type structures.