Mathematics (Jun 2022)

Singularities of Serial Robots: Identification and Distance Computation Using Geometric Algebra

  • Isiah Zaplana,
  • Hugo Hadfield,
  • Joan Lasenby

DOI
https://doi.org/10.3390/math10122068
Journal volume & issue
Vol. 10, no. 12
p. 2068

Abstract

Read online

The singularities of serial robotic manipulators are those configurations in which the robot loses the ability to move in at least one direction. Hence, their identification is fundamental to enhance the performance of current control and motion planning strategies. While classical approaches entail the computation of the determinant of either a 6×n or n×n matrix for an n-degrees-of-freedom serial robot, this work addresses a novel singularity identification method based on modelling the twists defined by the joint axes of the robot as vectors of the six-dimensional and three-dimensional geometric algebras. In particular, it consists of identifying which configurations cause the exterior product of these twists to vanish. In addition, since rotors represent rotations in geometric algebra, once these singularities have been identified, a distance function is defined in the configuration space C, such that its restriction to the set of singular configurations S allows us to compute the distance of any configuration to a given singularity. This distance function is used to enhance how the singularities are handled in three different scenarios, namely, motion planning, motion control and bilateral teleoperation.

Keywords