Water (Aug 2023)

Runoff Simulation and Climate Change Analysis in Hulan River Basin Based on SWAT Model

  • Quanchong Su,
  • Changlei Dai,
  • Zheming Zhang,
  • Shupeng Zhang,
  • Ruotong Li,
  • Peng Qi

DOI
https://doi.org/10.3390/w15152845
Journal volume & issue
Vol. 15, no. 15
p. 2845

Abstract

Read online

The shortage of water resources is a long-standing constraint on the development of the Chinese economy and society. In this paper, the climate change occurring in Hulan River Basin is analyzed using the data collected at Wangkui Meteorological Station from 1960 to 2020. The overall temperature in the basin shows an upward trend, with a cumulative increase of 1.6 °C, as does the precipitation, which reaches 566.2 mm. In contrast, there is a downward trend shown by wind speed, with a cumulative decrease of 1.313 m/s. GIS remote sensing technology is applied to build a SWAT distributed hydrological model for the purpose of conducting runoff simulation in Hulan River Basin, and SWAT-CUP software is used to correct and analyze the simulation results. The parameters of snow melt are set to improve the accuracy of the model. The runoff data collected from Lanxi Hydrological Station from 2008 to 2020 are used to verify the model. The results show that the efficiency coefficient (NES) and correlation coefficient (R2) are 0.75 and 0.84, respectively, in the validation period from 2010 to 2013, while they are 0.77 and 0.93, respectively, in the correction period from 2014 to 2016, meeting the criteria of model evaluation. It can be seen from results noted above that SWAT is applicable in Hulan River Basin, providing a certain reference for the management of hydrological and water resources available in this region and for the construction of a distributed hydrological model of rivers in those high-latitude cold regions.

Keywords