Physical Review Special Topics. Accelerators and Beams (Jun 2014)

Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths

  • X. L. Xu,
  • Y. P. Wu,
  • C. J. Zhang,
  • F. Li,
  • Y. Wan,
  • J. F. Hua,
  • C.-H. Pai,
  • W. Lu,
  • P. Yu,
  • C. Joshi,
  • W. B. Mori

DOI
https://doi.org/10.1103/PhysRevSTAB.17.061301
Journal volume & issue
Vol. 17, no. 6
p. 061301

Abstract

Read online Read online

Ionization injection triggered by short wavelength laser pulses inside a nonlinear wakefield driven by a longer wavelength laser is examined via multidimensional particle-in-cell simulations. We find that very bright electron beams can be generated through this two-color scheme in either collinear propagating or transverse colliding geometry. For a fixed laser intensity I, lasers with longer/shorter wavelength λ have larger/smaller ponderomotive potential (∝Iλ^{2}). The two-color scheme utilizes this property to separate the injection process from the wakefield excitation process. Very strong wakes can be generated at relatively low laser intensities by using a longer wavelength laser driver (e.g., a 10 μm CO_{2} laser) due to its very large ponderomotive potential. On the other hand, a short wavelength laser can produce electrons with very small residual momenta (p_{⊥}∼a_{0}∼sqrt[I]λ) inside the wake, leading to electron beams with very small normalized emittances (tens of nm). Using particle-in-cell simulations we show that a ∼10 fs electron beam with ∼4 pC of charge and a normalized emittance of ∼50 nm can be generated by combining a 10 μm driving laser with a 400 nm injection laser, which is an improvement of more than 1 order of magnitude compared to the typical results obtained when a single wavelength laser is used for both the wake formation and ionization injection. With the transverse colliding geometry, simulations show that similarly low emittance and much lower slice energy spread (∼30 keV, comparing with the typical value of few MeV in the longitudinal injection scheme) can be simultaneously obtained for electron beams with a few pC charge. Such low slice energy spread may have significant advantages in applications relevant to future coherent light sources driven by plasma accelerators.