Molecules (May 2015)

Theoretical Verification of Photoelectrochemical Water Oxidation Using Nanocrystalline TiO2 Electrodes

  • Shozo Yanagida,
  • Susumu Yanagisawa,
  • Koichi Yamashita,
  • Ryota Jono,
  • Hiroshi Segawa

DOI
https://doi.org/10.3390/molecules20069732
Journal volume & issue
Vol. 20, no. 6
pp. 9732 – 9744

Abstract

Read online

Mesoscopic anatase nanocrystalline TiO2 (nc-TiO2) electrodes play effective and efficient catalytic roles in photoelectrochemical (PEC) H2O oxidation under short circuit energy gap excitation conditions. Interfacial molecular orbital structures of (H2O)3 &OH(TiO2)9H as a stationary model under neutral conditions and the radical-cation model of [(H2O)3&OH(TiO2)9H]+ as a working nc-TiO2 model are simulated employing a cluster model OH(TiO2)9H (Yamashita/Jono’s model) and a H2O cluster model of (H2O)3 to examine excellent H2O oxidation on nc-TiO2 electrodes in PEC cells. The stationary model, (H2O)3&OH(TiO2)9H reveals that the model surface provides catalytic H2O binding sites through hydrogen bonding, van der Waals and Coulombic interactions. The working model, [(H2O)3&OH(TiO2)9H]+ discloses to have a very narrow energy gap (0.3 eV) between HOMO and LUMO potentials, proving that PEC nc-TiO2 electrodes become conductive at photo-irradiated working conditions. DFT-simulation of stepwise oxidation of a hydroxide ion cluster model of OH−(H2O)3, proves that successive two-electron oxidation leads to hydroxyl radical clusters, which should give hydrogen peroxide as a precursor of oxygen molecules. Under working bias conditions of PEC cells, nc-TiO2 electrodes are now verified to become conductive by energy gap photo-excitation and the electrode surface provides powerful oxidizing sites for successive H2O oxidation to oxygen via hydrogen peroxide.

Keywords