Molecules (Oct 2024)

Thermal and Sono—Aqueous Reforming of Alcohols for Sustainable Hydrogen Production

  • Choon Wee Kee,
  • Jia’E Zheng,
  • Wei Jie Yap,
  • Roy Ou Yong,
  • Yan Liu

DOI
https://doi.org/10.3390/molecules29204867
Journal volume & issue
Vol. 29, no. 20
p. 4867

Abstract

Read online

Hydrogen is a clean-burning fuel with water as its only by-product, yet its widespread adoption is hampered by logistical challenges. Liquid organic hydrogen carriers, such as alcohols from sustainable sources, can be converted to hydrogen through aqueous-phase reforming (APR), a promising technology that bypasses the energy-intensive vaporization of feedstocks. However, the hydrothermal conditions of APR pose significant challenges to catalyst stability, which is crucial for its industrial deployment. This review focuses on the stability of catalysts in APR, particularly in sustaining hydrogen production over extended durations or multiple reaction cycles. Additionally, we explore the potential of ultrasound-assisted APR, where sonolysis enables hydrogen production without external heating. Although the technological readiness of ultrasound-assisted or -induced APR currently trails behind thermal APR, the development of catalysts optimized for ultrasound use may unlock new possibilities in the efficient hydrogen production from alcohols.

Keywords