Electronic Journal of Biotechnology (Mar 2014)

Cyclodextrin glucanotransferase immobilization onto functionalized magnetic double mesoporous core–shell silica nanospheres

  • Abdelnasser S.S. Ibrahim,
  • Ali A. Al-Salamah,
  • Ahmed Mohamed El-Toni,
  • Mohamed A. El-Tayeb,
  • Yahya B. Elbadawi

DOI
https://doi.org/10.1016/j.ejbt.2014.01.001
Journal volume & issue
Vol. 17, no. 2
pp. 55 – 64

Abstract

Read online

Background: Cyclodextrin glucanotransferase (CGTase) from Amphibacillus sp. NPST-10 was covalently immobilized onto amino-functionalized magnetic double mesoporous core–shell silica nanospheres (mag@d-SiO2@m-SiO2-NH2), and the properties of the immobilized enzyme were investigated. The synthesis process of the nanospheres included preparing core magnetic magnetite (Fe3O4) nanoparticles, coating the Fe3O4 with a dense silica layer, followed by further coating with functionalized or non-functionalized mesoporous silica shell. The structure of the synthesized nanospheres was characterized using TEM, XRD, and FT-IR analyses. CGTase was immobilized onto the functionalized and non-functionalized nanospheres by covalent attachment and physical adsorption. Results: The results indicated that the enzyme immobilization by covalent attachment onto the activated mag@d-SiO2@m-SiO2-NH2, prepared using anionic surfactant, showed highest immobilization yield (98.1%), loading efficiency (96.2%), and loading capacity 58 µg protein [CGTase]/mg [nanoparticles]) which were among the highest yields reported so far for CGTase. Compared with the free enzyme, the immobilized CGTase demonstrated a shift in the optimal temperature from 50°C to 50–55°C, and showed a significant enhancement in the enzyme thermal stability. The optimum pH values for the activity of the free and immobilized CGTase were pH 8 and pH 8.5, respectively, and there was a significant improvement in pH stability of the immobilized enzyme. Moreover, the immobilized CGTase exhibited good operational stability, retaining 56% of the initial activity after reutilizations of ten successive cycles. Conclusion: The enhancement of CGTase properties upon immobilization suggested that the applied nano-structured carriers and immobilization protocol are promising approach for industrial bioprocess for production of cyclodextrins using immobilized CGTase.

Keywords