Processing and Application of Ceramics (Jun 2017)
Phase evolution during heat treatment of amorphous calcium phosphate derived from fast nitrate synthesis
Abstract
The phase evolution in amorphous calcium phosphate (ACP, with a Ca/P ratio of 1 : 1), derived from the fast nitrate synthesis using different conditions, was studied in temperature range 20-980°C. ACP crystallized within 600-700°C and the phase composition depended on the synthesis duration. It was firstly revealed that for an extremely short synthesis (1min) two metastable phases α′-CPP and α′-TCP of the high-temperature calcium pyrophosphate α-CPP and tricalcium phosphate α-TCP were crystallized. For a longer synthesis (5min), α′- CPP and minor β-CPP crystallized. The metastable phases gradually transformed to stable polymorphs β-CPP and β-TCP above 800°C, and a biphasic mixture β-CPP/β-TCP or β-CPP formed at 980°C. The crystallization of the metastable phases was attributed to the Ostwald step rule. A mechanism for the formation of TCP (Ca/P = 1.5) from ACP (Ca/P = 1) was proposed. The prepared powders of β-CPP/β-TCP, β-CPP or initial ACP were fine-grained and would have enhanced sinterability. Contribution to the densification was demonstrated due to the thermal transformation of the metastable polymorphs into stable phases having higher densities.
Keywords