Galaxies (Feb 2020)

A Multi-Wavelength View of OJ 287 Activity in 2015–2017: Implications of Spectral Changes on Central-Engine Models and MeV-GeV Emission Mechanism

  • Pankaj Kushwaha

DOI
https://doi.org/10.3390/galaxies8010015
Journal volume & issue
Vol. 8, no. 1
p. 15

Abstract

Read online

A diverse range of observational results and peculiar properties across the domains of observation have made OJ 287 one of the best-explored BL Lac objects on the issues of relativistic jets and accretion physics as well as the strong theory of gravity. We here present a brief compilation of observational results from the literature and inferences/insights from the extensive studies but focus on the interpretation of its ∼12-yr quasi-periodic optical outbursts (QPOOs) and high energy emission mechanisms. The QPOOs in one model are attributed to the disk-impact related to dynamics of the binary SMBHs while alternative models attribute it to the geometrical effect related to the precession of a single jet or double jets. We discuss implications of the new spectral features reported during the 2015−2017 multi-wavelength high activity of the source—a break in the NIR-optical spectrum and hardening of the MeV-GeV emission accompanied by a shift in the location of its peak, in the context of the two. The reported NIR-optical break nicely fits the description of a standard accretion disk emission from an SMBH of mass ∼ 10 10 M ⊙ while the time of its first appearance at the end of May, 2013 (MJD 56439) is in close coincidence with the time of impact predicted by the disk-impact binary SMBH model. This spectral and temporal coincidence with the model parameters of the disk-impact binary SMBH model provides independent evidence in favor of the model over the geometrical models which argue for a total central-engine mass in the range of 10 7 - 9 M ⊙ . On the other hand, the MeV-GeV spectral change is naturally reproduced by the inverse Compton scattering of photons from the broad-line region and is consistent with the detection of broad emission lines during the previous cycles of quasi-periodic outbursts. Combining this with previous SED studies suggests that in, OJ 287, the MeV-GeV emission results from external Comptonization.

Keywords