Buildings (May 2023)

Classification of Low-Strain Foundation Pile Testing Signal Using Recurrent Neural Network

  • Haiyuan Wang,
  • Shen Zhang,
  • Jianmin Li,
  • Yang Yuan,
  • Feng Zhang

DOI
https://doi.org/10.3390/buildings13051228
Journal volume & issue
Vol. 13, no. 5
p. 1228

Abstract

Read online

The testing of the foundation pile is an important means to ensure the quality of the foundation pile in the construction process, and the low-strain pile test is one of the most commonly used testing technologies. However, in order to ensure that the testing signal is effective and reliable, it is necessary to provide the preliminary judgment results when acquiring the testing signal in the field. In this paper, we propose a data classification method for low-strain pile testing data using a recurrent neural network as the core. In this method, after identification, tailoring, and normalization, the input feature vector with a sequential structure is sent into this model. The model ensures the efficient use of data values while considering the sequential relationship among the data. At last, we designed and produced one complete model pile and six asymmetric model piles, which can form thirteen kinds of testing signals. The optimal application model was selected by the 10-fold cross verification method, and the influence of increasing the input feature dimension on the accuracy was discussed. Finally, compared with the other two methods, this model has the highest accuracy, at 98.46%, but it requires more training parameters and a longer training time.

Keywords