Atmosphere (Nov 2023)

Data-Driven Global Subseasonal Forecast for Intraseasonal Oscillation Components

  • Yichen Shen,
  • Chuhan Lu,
  • Yihan Wang,
  • Dingan Huang,
  • Fei Xin

DOI
https://doi.org/10.3390/atmos14111682
Journal volume & issue
Vol. 14, no. 11
p. 1682

Abstract

Read online

As a challenge in the construction of a “seamless forecast” system, improving the prediction skills of subseasonal forecasts is a key issue for meteorologists. In view of the evolution characteristics of numerical models and deep-learning models for subseasonal forecasts, as forecast times increase, the prediction skill for high-frequency components will decrease, as the lead time is already far beyond the predictability. Meanwhile, intraseasonal low-frequency components are essential to the change in general circulation on subseasonal timescales. In this paper, the Global Subseasonal Forecast Model (GSFM v1.0) first extracted the intraseasonal oscillation (ISO) components of atmospheric signals and used an improved deep-learning model (SE-ResNet) to train and predict the ISO components of geopotential height at 500 hPa (Z500) and temperature at 850 hPa (T850). The results show that the 10–30 day prediction performance of the SE-ResNet model is better than that of the model trained directly with original data. Compared with other models/methods, this model has a good ability to depict the subseasonal evolution of the ISO components of Z500 and T850. In particular, although the prediction results from the Climate Forecast System Version 2 have better performance through 10 days, the SE-ResNet model is substantially superior to CFSv2 through 10–30 days, especially in the middle and high latitudes. The SE-ResNet model also has a better effect in predicting planetary waves with wavenumbers of 3–8. Thus, the application of data-driven subseasonal forecasts of atmospheric ISO components may shed light on improving the skill of seasonal forecasts.

Keywords