Applied Sciences (Feb 2020)
Advances in Micromanipulation Actuated by Vibration-Induced Acoustic Waves and Streaming Flow
Abstract
The use of vibration and acoustic characteristics for micromanipulation has been prevalent in recent years. Due to high biocompatibility, non-contact operation, and relatively low cost, the micromanipulation actuated by the vibration-induced acoustic wave and streaming flow has been widely applied in the sorting, translating, rotating, and trapping of targets at the submicron and micron scales, especially particles and single cells. In this review, to facilitate subsequent research, we summarize the fundamental theories of manipulation driven by vibration-induced acoustic waves and streaming flow. These methods are divided into two types: actuated by the acoustic wave, and actuated by the steaming flow induced by vibrating geometric structures. Recently proposed representative vibroacoustic-driven micromanipulation methods are introduced and compared, and their advantages and disadvantages are summarized. Finally, prospects are presented based on our review of the recent advances and developing trends.
Keywords