Test-retest reliability of 3D velocity-selective arterial spin labeling for detecting normal variations of cerebral blood flow
Feng Xu,
Dapeng Liu,
Dan Zhu,
Argye E. Hillis,
Arnold Bakker,
Anja Soldan,
Marilyn S. Albert,
Doris D.M. Lin,
Qin Qin
Affiliations
Feng Xu
The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Corresponding author.
Dapeng Liu
The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
Dan Zhu
The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
Argye E. Hillis
Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
Arnold Bakker
Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
Anja Soldan
Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
Marilyn S. Albert
Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
Doris D.M. Lin
The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA
Qin Qin
The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
Velocity-selective inversion (VSI) based velocity-selective arterial spin labeling (VSASL) has been developed to measure cerebral blood flow (CBF) with low susceptibility to the prolonged arterial transit time and high sensitivity to brain perfusion signal. The purpose of this magnetic resonance imaging study is to evaluate the test-retest reliability of a VSI-prepared 3D VSASL protocol with whole-brain coverage to detect baseline CBF variations among cognitively normal participants in different brain regions. Coefficients of variation (CoV) of both absolute and relative CBF across scans or sessions, subjects, and gray matter regions were calculated, and corresponding intraclass correlation coefficients (ICC) were computed. The higher between-subject CoV of absolute CBF (13.4 ± 2.0%) over within-subject CoV (within-session: 3.8 ± 1.1%; between-session: 4.9 ± 0.9%) yielded moderate to excellent ICC (within-session: 0.88±0.08; between-session: 0.77±0.14) to detect normal variations of individual CBF. The higher between-region CoV of relative CBF (11.4 ± 3.0%) over within-region CoV (within-session: 2.3 ± 0.9%; between-session: 3.3 ± 1.0%) yielded excellent ICC (within-session: 0.92±0.06; between-session: 0.85±0.12) to detect normal variations of regional CBF. Age, blood pressure, end-tidal CO2, and hematocrit partially explained the variability of CBF across subjects. Together these results show excellent test-retest reliability of VSASL to detect both between-subject and between-region variations supporting its clinical utility.