Antibiotics (Oct 2024)

Probiotic-Loaded Bacterial Cellulose as an Alternative to Combat Carbapenem-Resistant Bacterial Infections

  • José Gutiérrez-Fernández,
  • Laura Cerezo-Collado,
  • Víctor Garcés,
  • Pablo Alarcón-Guijo,
  • José M. Delgado-López,
  • Jose M. Dominguez-Vera

DOI
https://doi.org/10.3390/antibiotics13111003
Journal volume & issue
Vol. 13, no. 11
p. 1003

Abstract

Read online

Background: Carbapenems are one of the mainstays of treatment for antibiotic-resistant bacteria (ARB). This has made the rise of carbapenem-resistant bacteria a threat to global health. In fact, the World Health Organization (WHO) has identified carbapenem-resistant bacteria as critical pathogens, and the development of novel antibacterials capable of combating infections caused by these bacteria is a priority. Objective: With the aim of finding new alternatives to fight against ARB and especially against carbapenem-resistant bacteria, we have developed a series of living materials formed by incorporating the probiotics Lactobacillus plantarum (Lp), Lactobacillus fermentum (Lf), and a mixture of both (L. plantarum+L. fermentum) into bacterial cellulose (BC). Results: These probiotic-loaded bacterial celluloses inhibited the proliferation of three ARB, including two carbapenem-resistant enterobacteria (CRE), identified as Klebsiella pneumoniae and Enterobacter cloacae, and a carbapenem-resistant Pseudomonas aeruginosa. Interestingly, while the probiotics L. plantarum, L. fermentum, and the mixture of both were found to be inactive against these ARB, they became active once incorporated into BC. Conclusions: The increase in activity is due to the known effect that cells increase their activity once incorporated into a suitable matrix, forming a living material. For the same reasons, the probiotics in the living materials BC–L. plantarum, BC–L. fermentum, and BC–L. plantarum+L. fermentum showed increased stability, allowing them to be stored with bacterial activity for long periods of time (two months).

Keywords