Molecules (Apr 2024)

Increasing Analytical Quality by Designing a Thin-Layer Chromatography Scanner Method for the Determination of the Radiochemical Purity of Radiopharmaceutical Sodium Iodide <sup>131</sup>I Oral Solution

  • Miguel Vasquez-Huaman,
  • Américo Castro-Luna,
  • Norma Julia Ramos-Cevallos,
  • Donald Ramos-Perfecto,
  • Mario Alcarraz-Curi,
  • Jacqueline Segura-Vasquez,
  • Danny Cáceres-Antaurco

DOI
https://doi.org/10.3390/molecules29081883
Journal volume & issue
Vol. 29, no. 8
p. 1883

Abstract

Read online

The goal of this study was to apply the principles of analytical quality by design (AQbD) to the analytical method for determining the radiochemical purity (PQR) of the radiopharmaceutical sodium iodide 131I oral solution, utilizing thin-layer chromatography (TLC) with a radio–TLC scanner, which also enables the evaluation of product quality. For AQbD, the analytical target profile (ATP), critical quality attributes (CQA), risk management, and the method operable design region (MODR) were defined through response surface methodology to optimize the method using MINITAB® 19 software. This study encompassed the establishment of a control strategy and the validation of the method, including the assessment of selectivity, linearity, precision, robustness, detection limit, quantification limit, range, and the stability of the sample solution. Under the experimental conditions, the method parameters of the TLC scanner were experimentally demonstrated and optimized with an injection volume of 3 µL, a radioactive concentration of 10 mCi/mL, and a carrier volume of 40 µL. Statistical analysis confirmed the method’s selectivity for the 131I iodide band Rf of 0.8, a radiochemical impurity IO3− Rf of 0.6, a linearity from 6.0 to 22.0 mCi/mL, and an intermediate precision with a global relative standard deviation (RSD) of 0.624%. The method also exhibited robustness, with a global RSD of 0.101%, a detection limit of 0.09 mCi/mL, and a quantification limit of 0.53 Ci/mL, meeting the prescribed range and displaying stability over time (at 0, 2, and 20 h) with a global RSD of 0.362%, resulting in consistent outcomes. The development of a method based on AQbD facilitated the creation of a design space and an operational space, with comprehensive knowledge of the method’s characteristics and limitations. Additionally, throughout all operations, compliance with the acceptance criteria was verified. The method’s validity was confirmed under the established conditions, making it suitable for use in the manufacturing process of sodium iodide 131I and application in nuclear medicine services.

Keywords