BMC Genomics (Mar 2020)

Novel approach in whole genome mining and transcriptome analysis reveal conserved RiPPs in Trichoderma spp

  • Gabriel A. Vignolle,
  • Robert L. Mach,
  • Astrid R. Mach-Aigner,
  • Christian Derntl

DOI
https://doi.org/10.1186/s12864-020-6653-6
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a highly diverse group of secondary metabolites (SM) of bacterial and fungal origin. While RiPPs have been intensively studied in bacteria, little is known about fungal RiPPs. In Fungi only six classes of RiPPs are described. Current strategies for genome mining are based on these six known classes. However, the genes involved in the biosynthesis of theses RiPPs are normally organized in biosynthetic gene clusters (BGC) in fungi. Results Here we describe a comprehensive strategy to mine fungal genomes for RiPPs by combining and adapting existing tools (e.g. antiSMASH and RiPPMiner) followed by extensive manual curation based on conserved domain identification, (comparative) phylogenetic analysis, and RNASeq data. Deploying this strategy, we could successfully rediscover already known fungal RiPPs. Further, we analysed four fungal genomes from the Trichoderma genus. We were able to find novel potential RiPP BGCs in Trichoderma using our unconventional mining approach. Conclusion We demonstrate that the unusual mining approach using tools developed for bacteria can be used in fungi, when carefully curated. Our study is the first report of the potential of Trichoderma to produce RiPPs, the detected clusters encode novel uncharacterized RiPPs. The method described in our study will lead to further mining efforts in all subdivisions of the fungal kingdom.

Keywords