Frontiers in Neurology (Nov 2016)
Neuroproteomics and Systems Biology Approach to Identify Temporal Biomarker Changes Post Experimental Traumatic Brain Injury in Rats
Abstract
Traumatic brain injury (TBI) represents a critical health problem of which diagnosis, management and treatment remain challenging. TBI is a contributing factor in approximately 1/3 of all injury-related deaths in the United States. The Centers for Disease Control and Prevention (CDC) estimate that 1.7 million TBI people suffer a TBI in the United States annually. Efforts continue to focus on elucidating the complex molecular mechanisms underlying TBI pathophysiology and defining sensitive and specific biomarkers that can aid in improving patient management and care. Recently, the area of neuroproteomics-systems biology is proving to be a prominent tool in biomarker discovery for central nervous system (CNS) injury and other neurological diseases. In this work, we employed the controlled cortical impact (CCI) model of experimental TBI in rat model to assess the temporal-global proteome changes after acute (1 day) and for the first time, subacute (7 days), post-injury time frame using the established CAX-PAGE LC-MS/MS platform for protein separation combined with discrete systems biology analyses to identify temporal biomarker changes related to this rat TBI model. Rather than focusing on any one individual molecular entities, we used in silico systems biology approach to understand the global dynamics that govern proteins that are differentially altered post-injury. In addition, gene ontology analysis of the proteomic data was conducted in order to categorize the proteins by molecular function, biological process, and cellular localization. Results show alterations in several proteins related to inflammatory responses and oxidative stress in both acute (1 day) and subacute (7 days) periods post TBI. Moreover, results suggest a differential upregulation of neuroprotective proteins at 7-days post-CCI involved in cellular functions such as neurite growth, regeneration, and axonal guidance. Our study is amongst the first to assess temporal neuroproteome changes in the CCI model. Data presented here unveil potential neural biomarkers and therapeutic targets that could be used for diagnosis, treatment and, most importantly, for temporal prognostic assessment following brain injury. Of interest, this work relies on in silico bioinformatics approach to draw its conclusion; further work is conducted for functional studies to validate and confirm the omics data obtained.
Keywords