Tellus: Series A, Dynamic Meteorology and Oceanography (Jan 2021)

A possible generation mechanism for internal waves near the edge of a submesoscale eddy

  • I.P. Chunchuzov,
  • O.M. Johannessen,
  • G.O. Marmorino

DOI
https://doi.org/10.1080/16000870.2021.1947610
Journal volume & issue
Vol. 73, no. 1
pp. 1 – 11

Abstract

Read online

Recently, it has been shown for the first time by observations that an anticyclonic mesoscale eddy can generate internal waves (wavelengths of 0.4 to 1 km) that carry energy away from the eddy. In the present study, we investigate a possible mechanism for generating internal waves near the edge of a submesoscale eddy. The study was motivated by airborne infrared imagery that shows curved thermal bands (wavelengths ∼70 m) near the edge of a 1-km-diameter cyclonic eddy. We hypothesize that these bands represent internal wave wakes generated by turbulent perturbations having scales of a few tens of meters that are advected along the eddy’s thermal perimeter. An analytical theory is developed to investigate this for an idealized perturbation advected by a circular current. Calculations show that, for a reasonable choice of parameter values, an internal wave wake develops around the eddy that has spiral-like phase lines resembling the orientations and wavelengths of the field observations. The general validity of our proposed mechanism should be verified with further studies.

Keywords