Advances in Statistical Climatology, Meteorology and Oceanography (Feb 2023)
Modeling general circulation model bias via a combination of localized regression and quantile mapping methods
Abstract
General circulation model (GCM) outputs are a primary source of information for climate change impact assessments. However, raw GCM data rarely are used directly for regional-scale impact assessments as they frequently contain systematic error or bias. In this article, we propose a novel extension to standard quantile mapping that allows for a continuous seasonal change in bias magnitude using localized regression. Our primary goal is to examine the efficacy of this tool in the context of larger statistical downscaling efforts on the tropical island of Puerto Rico, where localized downscaling can be particularly challenging. Along the way, we utilize a multivariate infilling algorithm to estimate missing data within an incomplete climate data network spanning Puerto Rico. Next, we apply a combination of multivariate downscaling methods to generate in situ climate projections at 23 locations across Puerto Rico from three general circulation models in two carbon emission scenarios: RCP4.5 and RCP8.5. Finally, our bias-correction methods are applied to these downscaled GCM climate projections. These bias-correction methods allow GCM bias to vary as a function of a user-defined season (here, Julian day). Bias is estimated using a continuous curve rather than a moving window or monthly breaks. Results from the selected ensemble agree that Puerto Rico will continue to warm through the coming century. Under the RCP4.5 forcing scenario, our methods indicate that the dry season will have increased rainfall, while the early and late rainfall seasons will likely have a decline in total rainfall. Our methods applied to the RCP8.5 forcing scenario favor a wetter climate for Puerto Rico, driven by an increase in the frequency of high-magnitude rainfall events during Puerto Rico's early rainfall season (April to July) as well as its late rainfall season (August to November).