Liquid Crystal-Based Geometric Phase-Enhanced Platform for Polarization and Wavefront Analysis Techniques with the Short-TeraHertz FEL Oscillator TerRa@BriXSinO
Bruno Piccirillo,
Domenico Paparo,
Andrea Rubano,
Antonello Andreone,
Marcello Rossetti Conti,
Dario Giove,
Verónica Vicuña-Hernández,
Can Koral,
Maria Rosaria Masullo,
Giovanni Mettivier,
Michele Opromolla,
Gianpaolo Papari,
Andrea Passarelli,
Giuseppe Pesce,
Vittoria Petrillo,
Ester Piedipalumbo,
Marcel Ruijter,
Paolo Russo,
Luca Serafini
Affiliations
Bruno Piccirillo
Department of Physics “E. Pancini”, Università di Napoli “Federico II”, Complesso Universitario MSA, Via Cintia, 80126 Napoli, Italy
Domenico Paparo
CNR-ISASI, Institute of Applied Science and Intelligent Systems, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
Andrea Rubano
Department of Physics “E. Pancini”, Università di Napoli “Federico II”, Complesso Universitario MSA, Via Cintia, 80126 Napoli, Italy
Antonello Andreone
Department of Physics “E. Pancini”, Università di Napoli “Federico II”, Complesso Universitario MSA, Via Cintia, 80126 Napoli, Italy
Marcello Rossetti Conti
Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Laboratorio Acceleratori e Superconduttività Applicata—LASA, Milano, Italy
Dario Giove
Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Laboratorio Acceleratori e Superconduttività Applicata—LASA, Milano, Italy
Verónica Vicuña-Hernández
Department of Physics “E. Pancini”, Università di Napoli “Federico II”, Complesso Universitario MSA, Via Cintia, 80126 Napoli, Italy
Can Koral
Department of Physics “E. Pancini”, Università di Napoli “Federico II”, Complesso Universitario MSA, Via Cintia, 80126 Napoli, Italy
Maria Rosaria Masullo
INFN-Sezione di Napoli, Complesso Universitario MSA, Via Cintia, 80126 Napoli, Italy
Giovanni Mettivier
Department of Physics “E. Pancini”, Università di Napoli “Federico II”, Complesso Universitario MSA, Via Cintia, 80126 Napoli, Italy
Michele Opromolla
Department of Physics, Università degli Studi di Milano, Via Celoria, 16, 20133 Milano, Italy
Gianpaolo Papari
Department of Physics “E. Pancini”, Università di Napoli “Federico II”, Complesso Universitario MSA, Via Cintia, 80126 Napoli, Italy
Andrea Passarelli
INFN-Sezione di Napoli, Complesso Universitario MSA, Via Cintia, 80126 Napoli, Italy
Giuseppe Pesce
Department of Physics “E. Pancini”, Università di Napoli “Federico II”, Complesso Universitario MSA, Via Cintia, 80126 Napoli, Italy
Vittoria Petrillo
Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Laboratorio Acceleratori e Superconduttività Applicata—LASA, Milano, Italy
Ester Piedipalumbo
Department of Physics “E. Pancini”, Università di Napoli “Federico II”, Complesso Universitario MSA, Via Cintia, 80126 Napoli, Italy
Marcel Ruijter
Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Laboratorio Acceleratori e Superconduttività Applicata—LASA, Milano, Italy
Paolo Russo
Department of Physics “E. Pancini”, Università di Napoli “Federico II”, Complesso Universitario MSA, Via Cintia, 80126 Napoli, Italy
Luca Serafini
Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Laboratorio Acceleratori e Superconduttività Applicata—LASA, Milano, Italy
In this work, we propose to design a liquid crystal–based modular and extendable platform of cutting-edge optical technologies for studying materials based on the analysis of polarization and wavefront of light in the wavelength range of 10–50 μm, which is considered to work even in the longer wavelengths range. This platform will be driven by the future THz-FEL source TerRa@BriXSinO that produces high power radiation in THz-range from 6 THz up to 30 THz (Mid-/Far-IR). The lack of optical infrastructures in this range has been tackled by fabricating liquid crystal–based geometric phase components that have been specifically designed for this purpose. This is in order to optimally exploit all the source’s potential for maximum accuracy and efficiency in determining polarization- and wavefront-sensitive properties of materials. We present an overview of a few experiments for characterizing bulk inhomogeneities, dielectric anisotropy, surface roughness, cracks, impact damages, and stress and strain effects with special emphasis on non-destructive tests on composite structures. The tools for wavefront shaping developed within our platform will be exploited to add a further degree of freedom, i.e., orbital angular momentum, to nonlinear optics techniques, such as Terahertz Hyper-Raman spectroscopy, for investigating chiral agents’ properties.