Dyna (Oct 2018)

Corrosion resistance and tribological behavior of WS2-Ti coatings by Ti cathode power changes in magnetron co-sputtering

  • Jhonattan de la Roche-Yepes,
  • Juan Manuel Gonzalez Carmona,
  • Elizabeth Restrepo-Parra,
  • Hector Sanchez-Sthepa

DOI
https://doi.org/10.15446/dyna.v85n207.67980
Journal volume & issue
Vol. 85, no. 207
pp. 221 – 226

Abstract

Read online

Titanium-doped tungsten disulfide thin films (WS2-Ti) were deposited using a DC magnetron co-sputtering on AISI 304 stainless steel and silicon substrates. Different Ti cathode power densities between 0 and 1.25 W/cm2 were used for coating deposition. Energy-dispersive spectroscopy evidenced an increase in Ti percentage at the expense of W, as well as a sulfur deficiency. Raman spectroscopy was used to identify bands corresponding to W-S for undoped WS2. As the material was doped, changes in crystalline structure caused W-S main bands to separate. Scratch adhesion testing showed that Ti percentage increased along with the critical load (Lc). Furthermore, adhesive failure type changed from plastic to elastic. Finally, corrosion resistance analysis using electrochemical impedance spectroscopy (EIS) showed that, at high Ti concentrations, corrosion resistance was enhanced as Ti facilitates coating densification and generates a protective layer.

Keywords