Oncology and Therapy (Jan 2024)
Intratumoral Injection of Large Surface Area Microparticle Taxanes in Carcinomas Increases Immune Effector Cell Concentrations, Checkpoint Expression, and Synergy with Checkpoint Inhibitors: A Review of Preclinical and Clinical Studies
Abstract
Abstract This review summarizes development of large surface area microparticle paclitaxel (LSAM-PTX) and docetaxel (LSAM-DTX) for local treatment of primary carcinomas with emphasis on immunomodulation. Intratumoral (IT) delivery of LSAM-PTX and LSAM-DTX provides continuous, therapeutic drug levels for several weeks. Preclinical studies and clinical trials reported a reduction in tumor volume (TV) and immunomodulation in primary tumor and peripheral blood with increases in innate and adaptive immune cells and decreases in suppressor cells. Increased levels of checkpoint expression of immune cells occurred in clinical trials of high-risk non-muscle-invasive bladder cancer (LSAM-DTX) and unresectable localized pancreatic cancer (LSAM-PTX). TV reduction and increases in immune effector cells occurred following IT LSAM-DTX and IT LSAM-PTX together with anti-mCTLA-4 and anti-mPD-1, respectively. Synergistic benefits from combinatorial therapy in a 4T1-Luc breast cancer model included reduction of metastasis with IT LSAM-DTX + anti-mCTLA-4. IT LSAM-PTX and LSAM-DTX are tumoricidal, immune enhancing, and may improve solid tumor response to immune checkpoint inhibitors without additional systemic toxicity.
Keywords