Materials Today Bio (Oct 2024)

Synthesis of hemostatic aerogel of TEMPO-oxidized cellulose nanofibers/collagen/chitosan and in vivo/vitro evaluation

  • Lu Liu,
  • Liang Liu,
  • Lin Chen,
  • Genqiang Chen,
  • Yen Wei,
  • Feng F. Hong

Journal volume & issue
Vol. 28
p. 101204

Abstract

Read online

The treatment of internal hemorrhage remains challenging due to the current limited antibacterial capability, hemostatic efficacy, and biocompatibility of hemostatic materials. The TEMPO-oxidized cellulose nanofibers/collagen/chitosan (TCNF/COL/CS) hemostatic aerogel was developed in this work by physically encasing COL in a sandwich structure and electrostatically self-assembling polyanionic TCNF with polycationic CS. In vitro coagulation experiments revealed the favorable procoagulant properties of TCNF/COL/CS along with high adhesion to erythrocytes and platelets. TCNF/COL/CS significantly increased the hemostatic efficacy by 59.8 % and decreased blood loss by 62.2 % in the liver injury model when compared to Surgicel®, the most frequently used hemostatic material. Furthermore, it demonstrated outstanding biodegradability both in vitro and in vivo, and a substantial increase in resistance (96.8 % against E. coli and 95.4 % against S. aureus) compared to TCNF. The significant hemostatic and biodegradable characteristics of TCNF/COL/CS can be ascribed to its interconnected porous structure, increased porosity, and efficient water absorption, along with the synergistic effect of the three constituents. The TCNF/COL/CS aerogel shows significant potential to control internal bleeding. A novel plant-derived nanocellulose composite aerogel has been described here for the first time; it has outstanding antibacterial characteristics, higher biocompatibility, and outstanding hemostatic characteristics in vivo.

Keywords