Algorithms (Nov 2023)

A Narrow-Down Approach Based on Machine Learning for Indoor Localization

  • Sahibzada Muhammad Ahmad Umair,
  • Tughrul Arslan

DOI
https://doi.org/10.3390/a16110529
Journal volume & issue
Vol. 16, no. 11
p. 529

Abstract

Read online

Over the past decade, the demand and research for indoor localization have burgeoned and Wi-Fi fingerprinting approach has been widely considered because it is cheap and accessible. However, most existing methods lack in terms of positioning accuracy and high computational complexity. To cope with these issues, we formulate a two-stage, coarse and accurate positioning narrow-down approach (NDA). Furthermore, a three-step source domain refinement (SDR) scheme that involves outlier removal, stable AP’s weight enhancement, and a data averaging technique by applying the K-means clustering algorithm is also proposed. The collaboration of SDR scheme with the training data selection, area division, and overlapping schemes reduces the computational complexity and improves coarse positioning accuracy. The effect of the proposed SDR scheme on the performance of the support vector machine (SVM) and random forest algorithms is also presented. In the final/accurate positioning phase, a set of lightweight neural networks (DNNs), trained on different sub-areas, predict the user’s location. This approach significantly increases positioning accuracy while reducing the online computational complexity at the same time. The experimental results show that the proposed approach outperforms the best solutions presented in the literature.

Keywords