Applied Sciences (May 2022)

GNSS/INS Integration Based on Machine Learning LightGBM Model for Vehicle Navigation

  • Bangxin Li,
  • Guangwu Chen,
  • Yongbo Si,
  • Xin Zhou,
  • Pengpeng Li,
  • Peng Li,
  • Tobi Fadiji

DOI
https://doi.org/10.3390/app12115565
Journal volume & issue
Vol. 12, no. 11
p. 5565

Abstract

Read online

To solve the problem of data accuracy degradation of vehicle GNSS/INS integrated navigation systems when the GNSS signal is unavailable or there is a GNSS outage, this paper improves the existing GNSS/INS integration methodology for land vehicle navigation based on the AI method. First, a GNSS/INS integration methodology for land vehicle navigation based on position update architecture (PUA) using LightGBM regression for predicting the position of a vehicle during a GNSS outage is presented. It uses LightGBM to model the relationship between INS data and vehicle position changes. On-board INS and GNSS data are collected when the GNSS signal is available and are used to train the PUA-LightGBM model; in the event of a GNSS outage, INS data are used as the input to the PUA-LightGBM to predict the change in vehicle position. Second, a vehicle navigation data acquisition system was designed for model validation. This included a self-developed GNSS/INS integrated navigation system and a Novatel pwrpak7-e1 GNSS/INS integrated navigation system for data acquisition on six road segments. Finally, the collected data were used for machine learning training of the PUA-LightGBM model and the existing PUA-RandomForest model. As a result, the PUA-LightGBM predicts the vehicle position with less error in the event of a GNSS outage and takes less time to train. It was also demonstrated that by allowing the model to be dynamically trained or updated while the vehicle is moving the PUA-LightGBM could adapt perfectly to the predictions of vehicle position changes in different complex road segments.

Keywords